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It  is shown that  pa r t i c les  moving in a pulsat ing flow with re la t ive  veloci t ies  extending outside 
the normal  Stokes range acquire  ave rage  veloci t ies  differing f r o m  those no rma l ly  assoc ia ted  
with sedimentat ion.  

Many technological  p r o c e s s e s  involve the motion of dust or  silt  in a pulsat ing flow of liquid. In the 
usual methods  employed fo r  calculat ing the veloci t ies  and t r a j ec to r i e s  of the pa r t i c l e s ,  it is taci t ly assumed 
that  the a l ternat ing effects  of the acce le ra t ing  and r e t a rd ing  pulsat ions on the mot ion of a pa r t i c l e  compen-  
sa te  each other ,  and the ave r age  mot ion r e m a i n s  the s a m e  as in the absence  of pulsa t ions .  

In o rder  to ver i fy  the val idi ty of this assumpt ion ,  le t  us cons ider  the effect  of the pulsat ions of a 
liquid on the averaged  motion of a suspended pa r t i c l e  in genera l  f o rm ,  confining attention to the solution 
of the one-dimensional  p rob lem.  Le t  us asst~me that  per iodic  pulsat ions of a r b i t r a r y  f o r m  a re  s u p e r i m -  
posed on the uniform averaged  motion of the flow, while the acce le ra t ion  of the external  m a s s  fo r ce  acting 
on the pa r t i c l e  is constant .  

If  we neglect  the influence of the augmented m a s s  and the effect  of acce le ra t ion  on the r e s i s t a n c e  coef -  
f ic ient ,  the pa r t i c l e  will be  acted upon by  the  r e s i s t i v e  fo r ce s  and by  the external  and genera l ized  A r c h i -  
medes  fo r ce  (-~r63/6 gradp) ,  which for  an ideal liquid will be equal to m t ( j - d v / d t ) .  Then the equation of 
mot ion of a spher ica l  pa r t i c l e  takes  the f o r m  

dw PlU]Ul + (m~ - -  rn,)] + m~ d_v . (1) 
m2 dt -- k - - ~  " 2 at 

Substituting w = v + u, t = , T ,  
(1) to the  d imens ion less  f o r m  

v = VaV and using the s i m i l a r i t y  c r i t e r i a  Re, Ar ,  Stk, and R, we reduce  

dRe dV I 
R - -  - -  (# Re - -  Ar), (2) 

d~ d* Stk 

where  Re is the d imens ion less  r e l a t ive  veloci ty  of the pa r t i c l e  and V(T) is the d imens ion less  veloci ty  of the 
pulsat ions of the liquid, with a per iod equal to unity. 

Analyzing the motion of the pa r t i c l e  in the pulsat ing medium,  we r e a d i y  see  that  Reff) is a per iodic  
function, not depending on the initial velocity, and synchronous with Vff). 

Let us consider the steady periodic motion of the particle. In this case Re and ~ Re = ANmay be ex- 

pressed in the form Re@) = Re 0 + Re@), A = A 0 + ~(T), where Re 0 and A 0 are the constant and Re(T) and ~(T) 
the variable (periodic) components of Re@) and A(T). According to definition 
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.Pu t t ing  ~b = ,$o + A~p, w h e r e  ~]Jo is  t he  v a l u e  of ~ f o r  Re  = Reo, we  h a v e  

1 

Ao = ~o Reo § .I A~ Re d-c. 
0 

Let us now find A 0 from (2): 

i i I 
Ao = - -  R. Stk .I dV (~) - -  Stk d Re (z) -~- Ar .l dz. 

o o 0 

Since V(r) and Re(r) are periodic functions, we have A 0 = Ar. 

For the uniform motion of a particle in a liquid moving at a constant velocity, i.e., for Re = Re s 

: const, Equation (2) leads to Ar : ~sRes, and from (3) we obtain 

w h e r e  

(3) 

% Reo = ~8 R% § C, (4) 

1 

C = -- j" A, Re d~. (5) 
0 

The quantity Ar may be considered as a dimensionless external force acting on the particle. Hence 

on the basis of Eq. (4) the quantity C may also be considered as an additional force arising under the 

influence of the velocity pulsations. In the presence of this component, which we may call the pulsational 

force, Equation (4) leads to the relations ~/20Re0 # ~sRes or Re 0 # Re s. 

Let us consider several cases in which the presence or absence of a pulsationat force (and also the 

sign of the latter) may be established without solving the nonlinear Eq. (2) and the integral (5). For this 

purpose let us determine the form of the function A~bRe = (~--~0)Re. It may easily be shown that, since ~]J 

is a unique function of IRe], A~bRe is an odd function of Re. 

In the range of applicability of the Stokes formula ([Rel < Rec) ~ = 24 and A~/~Re = (24-~/;0)Re. If IRe01 

< Rec, then ~b = 24 and A~bRe = 0 (the curve of A~pRe coincides with the horizontal axis in the range Rec-Rec). 

However, if Re 0 > Rec, then r > 24, and A~Re is represented by an inclined curve passing through the ori- 

gin of coordinates (Fig. I). 

In order to find the curve of ~Re outside this range, we considered the derivatives of A~Re with re- 

spect to Re: 

(A~; Re)' = (A,)'  Re § A~ = , '  Re + ,  - -  %, 

(A~ Re)" =- 2~' § ~" Re. 

The quantities 2~1~' + ~"Re were determined graphically and by numerical differentiation of the ~ = k 

IRel curve, where k = flRel is a certain relationship derived from the experimental investigations of a 

large number of authors, which we smoothed by the method of least squares to an accuracy of one unit in 

the fourth place of decimals. For Re c < Re < 105(A~DRe) ~ is a finite positive quantity. Hence in this region 

the A~Re curve is concave and in the range I05 ~ Re _-Re c convex (curve I-I in Fig. I). 

Making use of the foregoing conclusions regarding the shape of the A~Re curve, let us now analyze 

Eq. (5). 

I. For -Re c < Re < RecthequantityA}Re : 0, and hence, on the basis of Eq. (5), C --- 0 for any form 

of the function Re(r). Hence for a linear law of resistance the pulsations of the liquid have no effect on the 

average motion of the particle. 

Now let us consider the motion of a particle in the case of a nortlinear law of resistance, when the 

value of Re passes outside the range-Re c to Re c and Re 0 > 0 (the case Re 0 < 0 cannot be considered, as this 
ab initio supposes the existence of a negative force C <-Ar). 

II. Let us write down the equation of the tangent !-I to the curve A}Re at the point Re = Re0: 
k 

A, Re -- (A,  Re)o (Re - -  Reo) = *o Reo (Re - -  Reo). (6) 
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The tangent 1 - 1  in tersects  the curve I - I  only at a point Re 1 < - R e  0 (Fig. 1), and hence the curve of 
A~Re l ies above the tangent for  Re > Rel, whence the integral (5) is 

l 1 

S A, ed >,o 
0 0 

Here  $~ and Re 0 are  finite quantities and the second integral  is zero,  so that the f i r s t  integral is pos i -  
t ive and the quantity C < 0. 

III.  Re 0 < Re c, Remax > Re c, IHemaxl > IRmin[. In this case  par t  of the ~pRe curve with Re > Re c 
also lies above the tangent (horizontal axis) and in the range - R e  c < Re < Re c coincides with it. Hence in 
this case  also C < 0. 

In the two la t ter  cases ,  depending on the relat ion between Remi n, Re0, and Rema x, the positive and 
negative amplitudes of the ~e(r) curve may  be either the same or different, and the ~e(~-) curve itself may  
be either symmetr ica l  or a symmet r i ca l .  

IV. If Re 0 < Re c, but R e m a  x < Re c mid [Reminl > IRemaxl, the ~]JRe curve will l ie below the tangent 
(horizontal axis) for  Re < - R e  c, and on the basis of the ea r l i e r  argaxment C > 0. In this case  the negative 
amplitudes of ~e  and Re are  always g rea te r  than the positive, and the curve has a markedly  asymmetr ica l  
cha rac te r .  

V. Re0-) is an odd function: Re(--~-) =-Re(T) or  corresponds  to the condition: Re(0.5-1-) = -Re( -~- ) .  

Using the oddness of the function A~pRe, we t r ans fo rm (5) by means of the well-known identities 
0 a '  a a 

f(x)dx = I f ( -x)dx and S f(x)dx : I f ( a -x )dx .  For  the two cases  we then have 
- - a  0 0 0 

+ 0 . 5  0,5 

In the la t te r  integral the second integralld function is r e p r e s e n t e d b y  the curve I I - I I  (Fig. 1), shifted 
equidistantly to the right by an amount 2Re 0 with respec t  to curve I - I .  It follows f rom a compar ison of the 
curves  that the integrand is always positive, and in contras t  to case  II we have C < 0 for  any values of Re. 

For  Re 0 < 0, the curve I I - I I  would be shifted to the left with respec t  to curve  I - I ;  hence the la t ter  
integral would be negative and C > 0; however,  this is impossible,  since for  a positive C we should have 
Re 0 > Re s > 0. Hence for symmet r ica l  pulsations -Ar<  C < 0, and a positive pulsation fo rce  is quite impos-  
sible, SO Lhat the averaged velocity of the  par t ic le  cannot be ra i sed  above the sedimentation velocity, nor  can 
it move against the external fo rce .  

Let  us also consider  the theoret ical ly  interest ing question of motion in the absence of an external fo rce  
(this may  be real ized,  for  example, ff the fo rce  of gravi ty  is balanced by an e lectrosta t ic  force) ,  when 
Ar  = 0, Re s = 0. Then in case  I u  (asymmetr ica l  fluctuations) a positive pulsation force  will produce an 
averaged motion of the par t ic le  at a veloci ty  given by Eq. (4), which will here  take the fo rm z~0Re 0 = C. In 
the case  of symmetr ica l  pulsations (V), however,  on the basis  of the inequality - A r  < C < 0 we have C --- 0. 
Thus, in the absence of art external fo rce ,  the creat ion of an average motion of the par t ic le  re lat ive to the 
liquid sole ly  as a resul t  of the pulsations of the la t ter  is only possible for  the case  of asymmetr ica l  f luctua-  
t ions.  The direction of this motion is opposite to the maximum ~mplitude of the re la t ive  velocity of the 

par t ic le .  

On the basis  of the foregoing analysis ,  we may  a s se r t  that, in many eases  of the motion of fine par t i -  
cles in a pulsating flow, the actual average relat ive velocity of a par t ic le  may  be expected to differ f rom its 
sedimentation velocity; the actual value may  be either g rea te r  than (case IV) or less  than (cases II, III, V) 

the la t te r .  

The value of the pulsation fo rce  C cannot be est imated in general  fo rm,  since the nonlinear relat ion 
(2) is insoluble in quadratures ,  in order  to indicate the order  of magnitude of this quantity, we therefore  
'made some calculations for  the s implest  par t icular  case  in which Re(q) was descr ibed by a rectangular  
graph:  Re = Re 1 for  0 < r < r 1, Re = Re 2 for  r 1 < r < I (Fig. 2a). Equation (2) is then reduced f rom differ-  

ential to algebraieal  fo rm 
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F i g .  1. D e p e n d e n c e  of t he  func t ion  A~Re on 

Re f o r  Re 0 > R e c :  I - I  c u r v e  of ~ R e ( R e ) ;  
I I - I I  a u x i l i a r y  func t ion  A~bRe(Re-2Re0);  1 - 1  
t a nge n t  to  the  c u r v e  I - I  a t  t he  po in t  Re  0. 

~p Re  = - -  N V '  + hr.  (7) 

S ince  in each  s e c t i o n  ~Re = c o n s t ,  we c o r r e s p o n d i n g l y  have  V '  = c o n s t  (the g r a p h  of V'(r) is  a l s o  r e c t a n g u -  

l a r ) .  

So tha t  the  va lue  of V a v e r a g e d  o v e r  t he  p e r i o d  is  equal  to  z e r o ,  we t a k e  V~ = 1 - z  1 and V~ = --T i .  Then 
f o r  each  p a r t  Eq. 7 t a k e s  the f o r m  

(8) 

S ince  the  a b s o l u t e  v e l o c i t y  of t h e  p a r t i c l e  canno t  be  a d i s c on t i nuous  func t ion  of t i m e ,  we have  W(T1--0) 
= w(~- 1 + 0) o r  RV i + Re 1 = RV 2 + Re 2, whence  V t - V  2 = ( R e 2 - R e l ) / R .  

H e n c e  V(v) has  b r e a k s  in con t i nu i t y  at  the  b o u n d a r i e s  of the  s e c t i o n s  ( F i g .  2b),  wh i l e  W(r) is  r e p r e -  
s e n t e d  b y  a s a w - t o o t h e d  c u r v e  ( F i g .  2c) .  

U s i n g  Eq.  (8), we m a d e  a n u m b e r  of c a l c u l a t i o n s  f o r  s y m m e t r i c a l  (~l = 0.5) and a s y m m e t r i c a l  p u l s a -  
t ions  of Re f o r  10 -2 <_ N <_ 107 and 10 -3 <_ A r  _ l 0  t .  T h e s e  v a l u e s  of t he  c r i t e r i a  m a y  be  r e a l i z e d  f o r  t he  
mo t ion  of p a r t i c l e s  wi th  a d e n s i t y  of P2 = 2000 k g / m  3 in a i r  a t  20~ and v a l u e s  of 5, j and v a / T  wi th in  the  
r a n g e s  1-500 f~, 9.81-104 m / s e c  2, and 10-4-103 m / s e e  2 . The  m a x i m u m  v a l u e  of ~ = 104 m a y  b e  a c h i e v e d ,  

f o r  e x a m p l e ,  in a dus t  c a t c h e r  of d i a m e t e r  200 m m  f o r  an in le t  v e l o c i t y  of 30 m / s e c .  The  r a n g e  of v a / T  

i n d i c a t e d  m a y  be  a c h i e v e d  u n d e r  cond i t i ons  of t u r b u l e n t  p u l s a t i o n s  when the  v e l o c i t y  v and the  tube  r a d i u s  
r v a r y  o v e r  t he  r a n g e s  1-50  m / s e c  and 0 .01-3  m .  If p u l s a t i o n s  a r e  a p p l i e d  a r t i f i c a l l y ,  m u c h  g r e a t e r  va lue s  
of N m a y  b e  a c h i e v e d  than  in t u r b u l e n t  f l o w s .  In a son ic  f i e l d ,  f o r  e x a m p l e ,  v a l u e s  of V a / T  = 103 m / s e c  2 
m a y  b e  ob t a ined  f o r  sound  i n t e n s i t i e s  of 100-130  dB and f r e q u e n c i e s  of 1 -10  kHz.  

VV'~v~ b 

c 

T 

I: 

F i g .  2. D e pe nde nc e  of t he  r e l a t i v e  v e l o c i t y  of the  
p a r t i c l e s  Re (a),  the  v e l o c i t y  of the  f low V (b), and 
the  a b s o l u t e  v e l o c i t y  of t he  p a r t i c l e  W (c) on t i m e  ~. 
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Fig. 3. Averaged velocity of a par t ic le  for  symmet r ica l  
rec tangular  pulsations of re la t ive  velocity ~r 1 = 0.5) in 
relation to the N and Ar  c r i t e r i a :  1) Ar = 104; 2) 103; 3) 
102; 4) I0; 5) 10 -3. 

Fig. 4. Averaged velocity of a particle for asymmet- 
rical pulsations of relative velocity (~I = 0.25) in relation 
to the N and Fr criteria: 1) N = 100; 2) 102; 3) 103; 4) 
104; 5) 106. 

Figure  3 i l lustrates the effect of the determining c r i t e r i a  on the motion of the par t ic le  in the fo rm of 
a curve relating Re0/Re s to the c r i t e r i a  N and Ar for  symmetr ica l  pulsations of relat ive velocity.  The 
velocity of the par t ic le  falls on increas ing N, i . e . ,  on increas ing the action of the pulsations in the flow (for 
a constant value of the external force) .  Thus, for  example, in the case  of a par t ic le  100 ~ in size,  its mean 
velocity for  an accelerat ion of 9.81 m / s e c  2 by the external force  and va /T  = 10 m / s e c  2 is (according to ca l -  
culation) approximately 94% of the sedimentation velocity, while, on fur ther  increasing Va/T (the cr i te r ion  

N), Re0/Re s falls and on the limit tends to zero,  i . e . ,  C - * - A r .  

The foregoing theoret ical  conclusions,  which imply the re tardat ion of the relat ive motion of the p a r -  
t icles under the influence of symmet r ica l  pulsations, were  also confirmed by solving the differential equa- 
tion of motion of the par t ic le  by the Runge-Kut ta  method in a high-speed computer .  Fluctuations in the 
ra te  of flow of a sinusoidal f o r m  (for example, with v a = 0.5 m / s e c  and a f requency of 100 Hz) cause the 
sedimentation velocity of a par t ic le  of d iameter  6 = 100 ~ to fall f r o m  0.556 to 0.407 m / s e c  (the co r respond-  
ing values of the c r i t e r i a  are  R = 3.25; Stk = 145; Ar = 93.5; Re0/Re s = 0.73). 

Fo r  asymmetr ica l  pulsations, the value of the pulsation fo rce  and the average velocity of the par t ic le  
depend on the type of a s y m m e t r y  of the pulsations,  and for  T i >_ 0.5 the fo rce  is always negative, while for  

~l < 0.5 C may be either negative or positive. 

This is because l a rge  values of ~ and of the res i s t ive  fo rce  correspond to the motion of a par t ic le  with 
a g rea te r  peak velocity, the direct ion of which coincides with or opposes the direct ion of action of }he exter -  

nal force ,  which depends on71 (Fig. 2a). 

It was found that the effect of the pulsations only appeared appreciably for  values of N > At .  We the re -  
fo re  evaluated Re0/Re s for  asymmetr ica l  pulsations as a function of the c r i t e r i a  N and F r  = N / A t ;  an ex- 
ample for  ~l = 0.25 is presented in Fig. 4. All the curves  in Fig.  4 pass c lose to the point F r  = 10 mad Re 0 
/Re  s = 1. This shows that, t~p to N = 10At, the existence of the pulsations with~ 1 = 0.25 has no appreciable 
effect, except for  la rge  values of the cr i te r ion  N. In our own case  of N = 102 there  is a slight re tardat ion 
of the par t ic le  (C < 0) for  values of - 1 < l o g F r  < 1. For  values of F r  > 10 there  is an increase  in the pa r -  
t ic le  velocity (C > 0) in the direct ion of the positive axis. In conclusion, we may  thus present  the following 

points: 

1) for  the motion of a par t ic le  in a pulsating flow of liquid at re la t ive  velocities extending outside the 
Stokes region,  the averaged velocity of the par t ic le  may  differ f rom the velocity in an unperturbed 
liquid. In this case  the accelera t ing and re tarding effects of the pulsations of the liquid on the m o -  
tion of the par t ic le  do not compensate  each other,  and an additional "pulsation" force  a r i ses ;  

2) this fo rce  may  be ei ther  posit ive or negative; 

1380 



3) for any symmetrical pulsations of the relative velocity of the particle, the pulsation force is. always 
negative, but smaller (in absolute magnitude) than the external force; 

4) numerical calculations confirm the conclusions of the theoretical analysis, and show that, h~ the 
presence of symmetrical pulsations of the relative velocity of the particle, a negative pulsation 
force is created, leading to a reduction in the averaged particle velocity. For asymmetrical pulsa- 
tions, the absolute value of the pulsation force may be several orders of magnitude greater than the 
external force. 

5, P2 
W, U 

v, p,,~, % 

T 

T 

J 
P 
m 2 a n d  m i 
k and  z~ = kl Rel 
Re  = u6p~/~?, 
Stk = 4p252/3~/T:; 

N O T A T I O N  

a r e  t h e  d i a m e t e r ,  m ,  and d e n s i t y ,  k g / m  3, of t h e  p a r t i c l e ;  
are the absolute velocity of particle and velocity relative to the liquid, m/see; 
are the velocity, m/see, density, kg/m 3, dynamic viscosity, N �9 sec/m 2, and amplitude 
of the velocity m/see, of the liquid; 

is the time, sec; 
is the period, sec; 
is the acceleration of the external mass force, m/see2; 
is the pressure, N/m2; 
are the mass of particle and of the liquid displaced by the latter, kg; 
are resistance coefficients; 

R = Va5 p t(P2- P 1)/~,P2; 
F r  = v a / j T ,  
A r  = 4j (P2 -- PO 53pl/3712; 
N = R Stk. 
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