EFFECT OF THE PULSATIONS OF A LIQUID ON THE
AVERAGED MOTION OF A SUSPENDED PARTICLE

L. P. Yanovskii and N, I, Zverevx UDC 532.529.5

It is shown that particles moving in a pulsating flow with relative velocities extending outside
the normal Stokes range acquire average velocities differing from those normally associated
with sedimentation.

Many technological processes involve the motion of dust or silt in a pulsating flow of liquid, In the
usual methods employed for calculating the velocities and trajectories of the particles, it is tacitly assumed
that the alternating effects of the accelerating and retarding pulsations on the motion of a particle compen-
sate each other, and the average motion remains the same as in the absence of pulsations,

In order to verify the validity of this assumption, let us consider the effect of the pulsations of a
liquid on the averaged motion of a suspended particle in general form, confining attention to the solution
of the one-dimensional problem, Let us assume that periodic pulsations of arbitrary form are superim-
posed on the uniform averaged motion of the flow, while the acceleration of the external mass force acting
on the particle is constant.

If we neglect the influence of the augmented mass and the effect of acceleration on the resistance coef-
ficient, the particle will be acted upon by the resistive forces and by the external and generalized Archi-
medes force (—753/6 gradp), which for an ideal liguid will be equal to my(j—dv/dt), Then the equation of
motion of a spherical particle takes the form

dw ad? plu]uf

dv
2;{':—’3—4’_ +(m2_m1)]+m1dt @)

Substitutingw =v+u, t =1T, v=v,V and using the similarity criteria Re, Ar, Stk, and R, we reduce
{1) to the dimensionless form
dRe av

- —RE 2
= R Stk (pRe — An), @)

where Re is the dimensionless relative velocity of the particle and Vi) is the dimensionless velocity of the
pulsations of the liquid, with a period equal to unity.

Analyzing the motion of the particle in the pulsating medium, we readily see that Refr) is a periodic
function, not depending on the initial velocity, and synchronous with Vir).

Let us consider the steady periodic motion of the particle, In this case Re and yyRe = A . may be ex-
pressed in the form Refr) = Rey + Refr), A = Ay + A('r), where Re, and A, are the constant and Re(q-) and A(-r)
the variable (periodic) components of Refr) and Afr). According to definition

1 1
Ay = j A(r)dr = 5' P Redr.

0

0
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Putting ¢ = ¢, + AP, where 1, is the value of y for Re = Rey, we have
1

Ay = o Rey+ S. AP Redr. 3)

0

Let us now find A, from (2):

1 t 1
Ay = — RStk [ dV (1) — Stk SdRe(T) -+ Ars' dr.
0 0 0

Since V(r) and Refr) are periodic functions, we have Ay = Ar,

For the uniform motion of a particle in a liquid moving at a constant velocity, i.e,, for Re = ReS
= const, Equation (2) leads to Ar = pgRey, and from (3) we obtain

P, Reo =1, Res +C, 4)

where

C=— f ApRedr. (5)

0

The quantity Ar may be considered as a dimensionless external force acting on the particle. Hence
on the basis of Eq. (4) the quantity C may also be considered as an additional force arising under the
influence of the velocity pulsations., In the presence of this component, which we may call the pulsational
force, Equation (4) leads to the relations yRe; = jgReg or Re; = Reg.

Let us congider several cases in which the presence or absence of a pulsational force (and also the
sign of the latter) may be established without solving the nonlinear Eq. (2) and the integral (5). For this
purpose let us determine the form of the function AyRe = (y —yy)Re. It may easily be shown that, since y
is a unique function of |Rej, AyRe is an odd function of Re,

In the range of applicability of the Stokes formula (|Re} < Reg)p = 24 and AYRe = (24—pg)Re. If |Reyl
< Reg, then p =24 and ApRe = 0 (the curve of AYRe coincides with the horizontal axis in the range Re,-Re.).
However, if Re;>Reg, then y,>24, and AYRe is represented by an inclined curve passing through the ori-
gin of coordinates (Fig. 1),

In order to find the curve of AjRe outside this range, we considered the derivatives of AyRe with re-
spect to Re:

(AMpRe)' = (AP)' Re 4 Ay = ' Re + 19—,
(AP Re)’ == 20 -+ ¢ Re.

The quantities 2y' + y"Re were determined graphically and by numerical differentiation of the y = k
|Rej curve, where k = f|Re| is a certain relationShi‘p derived from the experimental investigations of a
large number of authors, which we smoothed by the method of least squares to an accuracy of one unit in
the fourth place of decimals. For Re, < Re < 109 {(AURe)" is a finite posifive quantity, Hence in this region
the AypRe curve is concave and in the range 10° = Re =—Re, convex (curve I-1 in Fig, 1).

Making use of the foregoing conclusions regarding the shape of the AyRe curve, let us now analyze
Eq. (5).

I. For —Re, < Re < Reg the quantityAyRe = 0, and hence, on the basis of Eq. (5), C =0 for any form
of the function Re¢r). Hence for a linear law of resistance the pulsations of the liquid have no effect on the
average motion of the particle,

Now let us consider the motion of a particle in the case of a nonlinear law of resistance, when the
value of Re passes cutside the range —Regto Re, and Rey > 0 (the case Rey < 0 cannot be considered, as this
ab initio supposes the existence of a negative force C <—Ar),

II. Let us write down the equation of the tangent 1—1 to the curve AyRe at the point Re = Rey:
N
Ay Re = (A Re); (Re — Re,) = ; Re, (Re — Re,). 6)
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The tangent 1—-1 intersects the curve I-I only at a point Re; < ~Re; (Fig. 1), and hence the curve of
AyRe lies above the tangent for Re > Re;, whence the integral (5) is

1 1
j ApRedv >4 Re, j Redr.
0 ]

Here 3§ and Rey are finite quantities and the second integral is zero, so that the first integral is posi-
tive and the quantity C < 0,

II. Rey< Rey, Reyax > Rey, IRemaxl > IRyipl. In this case part of the AyRe curve with Re > Re,
also lies above the tangent (horizontal axis) and in the range —Re, < Re < Re, coincides with it, Hence in
this case also C < 0,

In the two latter cases, depending on the relation between Rey,in, Rey, and Repax, the positive and
negative amplitudes of the Refr) curve may be either the same or different, and the Refr) curve itself may
be either symmetrical or asymmetrical,

IV. If Rej < Reg, but Repax < Re, and IRemin! > |[Repyax|, the AYRe curve will lie below the tangent
(horizontal axis) for Re <—Re,, and on the basis of the earlier argument C > 0, In this case the negative
amplitudes of Re and Re are always greater than the positive, and the curve has a markedly asymmetrical
character.

V. 'f{e(—r) is an odd funqtion: ﬁe(—f) =—§e(1') or corresponds to the condition: ﬁe(O.S—'r) =—§e(—'r).

Using the oddness of the function ApRe, we transform (5) by means of the well-known identities

0 a’ a a
5‘ f(x)dx = Sf(—x)dx and Sf(x)dx = Sf(a—x)dx, For the two cases we then have
—a 0 0 1]

+0.5 0,5
C=— j ApRedt = _5 {ApRe [Re (t)] — A Re [Re(t) — 2 Rey] | dr.
—0.5 8

In the latter integral the second integrand function is represented by the curve II-II (Fig. 1), shifted
equidistantly to the right by an amount 2Re, with respect to curve I-I. It follows from a comparison of the
curves that the integrand is always positive, and in contrast to case II we have C < 0 for any values of Re,

For Rey < 0, the curve I-II would be shifted to the left with respect to curve I-I; hence the latter
integral would be negative and C > 0; however, this is impossible, since for a positive C we should have
Rey > Reg > 0, Hence for symmetrical pulsations —Ar< C < 0, and a positive pulsation force is quite impos-
sible, so that the averaged velocity of -the particle cannot be raised above the sedimentation velocity, nor can
it move against the external force.

Let us also consider the theoretically interesting question of motion in the absence of an external force
(this may be realized, for example, if the force of gravity is balanced by an electrostatic force), when
Ar = 0, Reg = 0. Then in case IV (asymmetrical fluctuations) a positive pulsation force will produce an
averaged motion of the particle at a velocity given by Eq. (4), which will here take the form j,Rey = C., In
the case of symmetrical pulsations (V), however, on the basis of the inequality —Ar < C < 0 we have C = 0.
Thus, in the absence of an external force, the creation of an average motion of the particle relative to the
liquid solely as a result of the pulsations of the latter is only possible for the case of asymmetrical fluctua-
tions. The direction of this motion is opposite to the maximum amplitude of the relative velocity of the
particle,

On the basis of the foregoing analysis, we may assert that, in many cases of the motion of fine parti-
cles in a pulsating flow, the actual average relative velocity of a particle may be expected to differ from its
sedimentation velocity; the actual value may be eithe:; greater than (case IV) or less than (cases II, III, V)
the latter,

The value of the pulsation force C cannot be estimated in general form, since the nonlinear relation
(2) is insoluble in quadratures. In order to indicate the order of magnitude of this quantity, we therefore
made some calculations for the simplest particular case in which Re(r) was described by a rectangular
graph: Re = Re, for 0< 7< 7y, Re = Re, for 7y < 7 < 1 (Fig. 2a). Equation (2) is then reduced from differ-
ential to algebraical form
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7 | Fig. 1. Dependence of the function AyRe on
Re for Rey> Rey: I-I curve of AyRe(Re);
II-1I auxiliary function AYyRe(Re—2Rey); 11
tangent to the curve I—-I at the point Re,.

PpRe = — NV’ + Ar. 7

Since in each section yRe = const, we correspondingly have V' = const (the graph of V'¢) is also rectangu-
lar).

So that the value of V averaged over the period is equal to zero, we take V{ =1—7; and Vy =—7,, Then
for each part Eq. 7 takes the form

P, Re; = — N (1 —7;) -+ Ar,
¥, Re, = N1, + Ar.

®)

Since the absolute velocity of the particle cannot be a discontinnous function of time, we have wiry—0)
= W(Ti + 0) or RV1 + Rel = RV2 + Rez, whence VI_VZ = (Rez‘—Rei)/R.

Hence V§) has breaks in continuity at the boundaries of the sections (Fig. 2b), while W) is repre-
sented by a saw-toothed curve (Fig, 2c},

Using Eq. (8), we made a number of calculations for symmetrical (r; = 0.5) and asymmetrical pulsa-
tions of Re for 1072 = N < 107 and 1072 < Ay = 10?, These values of the criteria may be realized for the
motion of particles with a density of p, = 2000 kg/m? in air at 20°C and values of §,j and v_/T within the
ranges 1-500 p, 9.81-10* m/sec?, and 1074-10° m/sec?, The maximum value of j = 10 may be achieved,
for example, in a dust catcher of diameter 200 mm for an inlet velocity of 30 m/sec. The range of v,/T
indicated may be achieved under conditions of turbulent pulsations when the velocity v and the tube radius
r vary over the ranges 1-50 m/sec and 0,01-3 m. If pulsations are applied artifically, much greater values
of N may be achieved than in turbulent flows. In a sonic field, for example, values of v /T = 10% m /sec?
may be obtained for sound intensities of 100-130 dB and frequencies of 1-10 kHz.
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Fig. 3. Averaged velocity of a particle for symmetrical

rectangular pulsations of relative velocity ¢y = 0.5) in

relation to the N and Ar criteria: 1) Ar = 10%; 2) 10%; 3)

10%; 4) 10; 5) 1073,
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Fig, 4. Averaged velocity of a particle for asymmet-
rical pulsations of relative velocity ¢ry = 0.25) in relation
to the N and Fr criteria: 1) N =109; 2) 10%; 3) 10%; 4)
10%; 5) 108,

Figure 3 illustrates the effect of the determining criteria on the motion of the particle in the form of
a curve relating Rey/Reg to the criteria N and Ar for symmetrical pulsations of relative velocity. The
velocity of the particle falls on increasing N, i.e., on increasing the action of the pulsations in the flow (for
a constant value of the external force). Thus, for example, in the case of a particle 100 p in size, its mean
velocity for an acceleration of 9,81 m/sec? by the external force and Va/T =10 m/sec? is (according to cal-
culation) approximately 949 of the sedimentation velocity, while, on further increasing v, /T (the criterion
N), Rey/Reg falls and on the limit tends to zero, i,e,, C —~—Ar,

The foregoing theoretical conclusions, which imply the retardation of the relative motion of the par-
ticles under the influence of symmetrical pulsations, were also confirmed by solving the differential equa-
tion of motion of the particle by the Runge—Kutta method in a high-speed computer, Fluctuations in the
rate of flow of a sinusoidal form (for example, with v, = 0.5 m/sec and a frequency of 100 Hz) cause the
sedimentation velocity of a particle of diameter § =100 p to fall from 0.556 to 0.407 m/sec (the correspond-
ing values of the criteria are R = 8.25; Stk = 145; Ar = 93.5; Rey/Reg = 0.73),

For asymmetrical pulsations, the value of the pulsation force and the average velocity of the particle
depend on the type of asymmetry of the pulsations, and for 1y = 0.5 the force is always negative, while for
71 < 0.5 C may be either negative or positive,

This is because large values of ¢ and of the resistive force correspond to the motion of a particle with
a greater peak velocity, the direction of which coincides with or opposes the direction of action of the exter-
nal force, which depends on 1y (Fig. 2a),

It was found that the effect of the pulsations only appeared appreciably for values of N> Ar. We there-
fore evaluated Rey/Reg for asymmetrical pulsations as a function of the criteria N and Fr = N/Ar; an ex-
ample for 1y = 0.25 is presented in Fig. 4. All the curves in Fig. 4 pass close to the point Fr = 10 and Re,
/Reg = 1. This shows that, up to N = 10Ar, the existence of the pulsations with ry = 0.25 has no appreciable
effect, except for large values of the criterion N. In our own case of N = 10% there is a slight retardation
of the particle (C < 0) for values of —1 < logFr <1. For values of Fr > 10 there is an increase in the par-
ticle velocity (C > 0) in the direction of the positive axis. In conclusion, we may thus present the following
points:

1) for the motion of a particle in a pulsating flow of liquid at relative velocities extending outside the
Stokes region, the averaged velocity of the particle may differ from the velocity in an unperturbed
liquid. In this case the accelerating and retarding effects of the pulsations of the liquid on the mo-
tion of the particle do not compensate each other, and an additional "pulsation” force arises;

2) this force may be either positive or negative;
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3) for any symmetrical pulsations of the relative velocity of the particle, the pulsation force is always
negative, buf smaller {in absolute magnitude) than the external force;

4) numerical calculations confirm the conclusions of the theoretical analysis, and show that, in the
presence of symmetrical pulsations of the relative velocity of the particle, a negative pulsation
force is created, leading to a reduction in the averaged particle velocity. For asymmetrical pulsa-
tions, the absolute value of the pulsation force may be several orders of magnitude greater than the
external force,

NOTATION
5, P2 are the diameter, m, and density, kg/m3, of the particle;
W, u are the absolute velocity of particle and velocity relative to the liquid, m/sec;
V, pgs s Y, are the velocity, m/sec, density, kg/m?, dynamic viscosity, N -sec/m?, and amplitude

of the velocity m/sec, of the liquid;

T is the time, sec;

T is the period, sec;

j is the acceleration of the external mass force, m/sec?;

p is the pressure, N/m?;

m, and my are the mass of particle and of the ligquid dispiaced by the latter, kg;
k and 3 = k| Rej are resistance coefficients;

Re = uspy/n,

Stk = 4p,52 /31T ;
R= Vaépi(Pz‘Pi)/T.’Pz;

Fr = Va/jT’
Ar = 4j(p,— p)) 6°p1/31%;
N = R Stk.
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